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A comparison is made of the accuracy, iterative properties, storage, and cpu time of 
several procedures for solving the nonlinear differential equations which describe the renal 
concentrating mechanism. In two procedures, Newton’s method is used to solve a nonlinear 
system of finite difference equations. The first employs a generalized linear equation solver, 
the second a specialized solver. In other procedures used, the unknowns of the problem 
are divided into two groups: The first group consists of the unknowns in each tube, and 
the second consists of the unknowns which link the tubes with each other. In conclusion, 
a set of guidelines for solving nonlinear fluid network problems is given. 

1. INTR~DuOTI~N 

The operating mechanism of the kidney is often explained in terms of a flow net- 
work, in which a fluid containing several solutes is transported through a system of 
tubes [l-3]. Each tube may interchange fluid or solutes, along its length, with other 
tubes through a common interstitial space. This interchange is caused by osmotic 
and hydrostatic pressure and electrochemical driving forces acting through the tube 
walls. The model leads to a system of differential equations describing the network 
flows. It is important to construct accurate and efficient algorithms for the numerical 
solution of these equations. The purpose of this paper is to describe our experience 
with several numerical schemes for solving the kidney equations. At the end we state 
some general conclusions which, it is hoped, will be applicable to other network flow 
problems. 

2. THE DIFFERENTIAL EQUATIONS 

We consider a family of parallel tubes, each tube extending from x = 0 to x = 1. 
Some of the tubes are connected with one another at x = 1. A mixture of water and 
K solutes is flowing in each tube. The tubes are placed in a common interstitial water- 
solute mixture. Each tube may exchange water or solute with the interstitium, through 
the tube wall, due to an osmotic or hydrostatic pressure difference. The variables of 
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the problem are C&X), the concentration of the kth solute in the ith tube; Fi,(x), 
the total volume flow in the ith tube; p,(x), the hydrostatic pressure in the ith tube; 
C&X), the concentration of the kth solute in the interstitium; p&), the pressure in the 
interstitium. The amount of water, or of solute k, leaking from tube i into the inter- 
stitium is denoted by Ji, and Jilt , respectively. These quantities are known functions 
of the concentrations C&X), C&X) and pressures pi(x), p,-,(x) in the ith tube and in the 
interstitium. 

With these notations, the differential equations describing the steady state flow 
along tube i are the incompressibility equation 

dF,*/dx = -Ji, , 1 GiGI, (2.1) 

the conservation of solute equations 

d(F<vCik)/dX = -Jik 4~ Sik 3 l<i<I, l<k<K, (2.2) 

and the pressure drop equation, 

dpildx = -R,F,, , 1 BiGI. (2.3) 

The function &x) is an external source (or sink) of solute k in tube i. The quantity 
Ri 2 0 is the flow resistance in tube i. 

The differential equations are coupled together with the conservation laws in the 
interstitium. These conservation laws are 

i Jig = 0, (2.4) 
i=l 

(2.5) 

where sok is an external source (or sink) of solute k in the interstitium. 
The boundary conditions in tube i depend on whether the tube is attached to another 

tube at x = 1. If tube i is not attached at x = 1, F,,(O) > 0, p,(O), and %(O) > 0, 
1 < k G K, are specified. If tubes i and j are attached at x = 1 (see Fig. l), fluid is 
considered as flowing into one of the tubes, say tube i, at x = 0. Then the boundary 
conditions for tube i are the conditions given above, and the boundary conditions for 
tube j are the continuity conditions FJl) = -Fi,,(l), ~~(1) = p,(l), cjk(l) = c&l), 
l<k<K. 

Equations (2.1)-(2.5) together with the boundary conditions complete the mathema- 
tical specification of the problem. In these equations, it has been assumed that the 
diffusional flow of the solutes is small relative to the convective flow, and has therefore 
been neglected. In addition, we have not specified the pressure forced boundary condi- 
tions or the more complicated flow networks that arise in more complete kidney 
models [4, 51. The computational procedures that are described here have been used 
to solve these more complicated renal network problems. We have not given here the 
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FIG. 1. Three tube model (-+ indicates direction of flow, => indicates transmembrane water 
fiux, and + indicates transmembrane salt flux). 

time dependent form of the kidney equations, but we remark that the use of an implicit 
difference scheme in the time dependent equations leads to a nonlinear boundary 
value problem similar to the one given here. 

3. THE COMPUTATIONAL PROCEDURES 

To describe the difference equations, we select a mesh spacing Ax and divide 
[0, l] into J =’ @x)-l equal subintervals. Letting F&j) denote the approximate value 
of F,,(jdx), and similarly for the other unknowns, we use the difference equations 

1 < j < J, (3.1) 

= -BL(j) + Jdj - 111 + hd.8 + dj - 111, 1 <j < J, (3.2) 

h(j) - pi(j - 1) 
Ax = -UWdj) + Fidj - l)l, 1 < j < J. (3.3) 

The conservation laws in the interstitium will be evaluated at the mesh points to obtain 

(3.5) 

Equations (3.1)-(3.9, together with the boundary conditions, then give a system of 
nonlinear algebraic equations for the unknown concentrations, flows, and pressures. 
Our purpose is to describe four computational procedures, plus some numerical 
results, for solving this nonlinear system. 
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In two of our procedures, Newton’s method is used to solve the nonlinear system 
of equations. A system of linear equations must be solved at each step of Newton’s 
method. The matrix of the linear system may be large if there are many tubes or solutes 
in the model, and if there are many mesh intervals on each tube. Because the flow 
paths are either along a tube or into the interstitium, the matrix is sparse, and two 
sparse matrix routines have been used to solve the linear system. One routine is a 
general purpose program due to Rheinboldt [6]. The program uses a reordering of the 
unknowns based upon an arc-graph representation of the structure graph of the matrix. 
We shall refer to the use of Newton’s method with the Rheinboldt matrix routine as 
procedure A. The second matrix routine, due to Tewarson et al. [7], involves a re- 
ordering of the unknowns which gives a matrix in bordered block triangular form 
(Table 1). The use of Newton’s method with the Tewarson routine will be called proce- 
dure B. 

TABLE I 

Residual, 4 Unknowns, y  

DHL DVR AVR INT 
~ ___ ~ ___ 

DHL X X 

DVR X X 

AVR X X x 
INT X x X X 

To describe the other computational procedures, it is convenient to divide the 
unknowns of the problem into two groups. The first group consists of the unknowns 
describing the flows along the tubes, and the second group consists of the unknowns 
which link the tubes with each other, The equations of the problem are, in a similar 
manner, divided into two groups. Thus, in our problem, the second group of unknowns 
consists of the interstitial concentrations, c,,(j), and pressures, pO(j), and the second 
group of equations consist of (3.4) and (3.5). We shall refer to this system as the reduced 
problem. The other variables of the problem are regarded as functions of the reduced 
variables. The functions are given implicitly by means of the tube equations (3.1)-(3.3). 

The reduced system of equations is solved iteratively by Newton’s method. These 
iterations will be called the outer iterations of the problem. During each outer itera- 
tion the values of the variables in each tube must be determined, possibly by using 
Newton’s method. Thus, the computational procedure involves a set of outer itera- 
tions and, for each outer iteration, a set of tube calculations. 

Two methods have been used to solve the tube equations. In one method, the set of 
tube equations is itself solved using Newton’s method. The use of Newton’s method 
to solve the reduced system, together with Newton’s method to solve the tube equa- 
tions will be called procedure C. In the second method, the tube equations are solved 
stepwise in the direction of flow. Thus, in a tube with flow in the positive x direction, 
if the interstitial variables are known and if c&j - l), FJj - l), pi(j - 1) are 



RENAL NETWORK FLOWS 57 

known, Equations (3.1~(3.3) are solved for cilc(j), Fiv(j), pi(j). The equations are 
solved by Newton’s method, or in certain special cases, by direct elimination. For tubes 
with flows in the negative direction, the variables at level j - 1 are evaluated analo- 
gously, given the values at level j. The use of Newton’s method to solve the reduced 
system, together with the stepwise method for solving the tube equations, will be called 
procedure D. 

To implement Newton’s method in the above procedures requires the calculation 
of many derivatives. These derivatives are calculated numerically by means of differ- 
ence quotients. 

Equations (2.1)-(2.5) comprise a two point boundary value problem for a system of 
differential equations. It may be asked whether shooting methods would be appro- 
priate for such problems. Such methods have been tried on simplified kidney equa- 
tions, where the interstitium has been removed from the model [8]. In general, this 
approach requires a much finer space increment than finite differences and is impracti- 
cal when more than one solute is considered. Furthermore, this approach requires 
solving some tubes by moving upstream, against the direction of flow, and this seems 
to create numerical instabilities. A form of shooting could be imagined as an alter- 
native to procedures C and D. In this alternative, one uses a differential equation 
routine to solve the initial value problems that are involved in the tube calculations. 
This gives rise to different sets of mesh spacings in the tubes and in the interstitium, 
and errors can accumulate through the interpolation of interstitial concentrations that 
is required. 

4. NUMERICAL RESULTS 

Our numerical procedures have been applied to the solution of the simple three 
tube model shown in Fig. 1. The three tubes represent the descending Henle’s limb, 
(DHL); the descending vasa recta, (DVR); and the ascending vasa recta, (AVR); 
these are numbered as shown. 

The problems use two solutes, numbered 1 = salt and 2 = protein. In addition, 
there is assumed to be a source of salt in the interstitium. This salt source would come 
from active transport out of the ascending Henle’s limb, which, for simplicity, has 
been removed from the problem. The following transmembrane flux law has been 
assumed for water. 

(4.1) 

where hi, is the hydraulic permeability of the ith tube, and vile is the Staverman 
reflection coefficient of the kth solute in the ith tube. 

The solute flux of the kth solute from the ith tube is taken as 

Jik = hi,& - cd + (’ -2u’k’ Jiv(cik + cok), (4.2) 

where hi, is the membrane permeability for the kth solute. 



58 MFJIA, KELLOGG, AND STEPHENSON 

It is expected that in the operation of this model, the salt source in the interstitium 
causes an increased interstitial concentration. The increased interstitial concentration 
draws fluid out of the DHL, and forces salt into the DVR and AVR. The fluid move- 
ment from the DHL to the interstitium causes an increased interstitial pressure, which 
forces fluid into the DVR and AVR. The resulting solution has an increased concen- 
tration and volume flow in the DVR and AVR. The parameters for this model are 
given in Table II. In addition, s,, = 1. The numerical conclusions that we have drawn 
from studies with this three tube model have been found to hold for more complicated 
models [4, 51. 

TABLE II 

Normalized Parameters 

1 loo 0 0 1 1 0.38 x 10-s 

2 100 50 0 0 1 0.15 x 10-a 

3 100 50 0 0 1 0.19 x 10-Z 

Tables III-V summarize the characteristics of each procedure. To measure the 
accuracy of each procedure the concentration ratio r = ql( 1)/c,,(O) is shown, and the 
most accurate solution obtained, corresponding to J = 1024, is given in parenthesis. 

TABLE III 

J=5 

Procedure Aa Procedure B Procedure C Procedure D 

r (3.7609) 3.74657 3.74658 3.74659 3.74652 

cpu time 13.38 3.96 29.90 3.90 

Iterations 5 5 6 6 

Expected tube/space iterations 
(DVR, AVR, DHL) - 12, 12, 12 40, 60 

Actual tube/space iterations - - 15, 16, 22 40,60 

Matrix size 942 780 114 144 

Arrays 3 2 3 1 

4 1E - 4 1E - 4 1E - 3 1E -4 

E IE - 5 lE- 5 1E - 6 1E 6 - 

l I - - 1E - 5 IE-5 

a Procedure A is Newton’s method with Rheinboldt’s matrix routine; procedure B uses Tewarson’s 
routine; procedure C uses Newton’s method to solve the tube equations; procedure D solves the 
tubes stepwise. 
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TABLE IV 

J = 10 

- 

r (3.7609) 

cpu time 

Iterations 

Expected tube/space iterations 
(DVR, AVR) 

Actual tube/space iterations 

Matrix size 

Arrays 

AY 
E 

Procedure A Procedure B Procedure Da 

3.75702 3.75700 3.75702 

85.99 16.39 10.13 

5 5 6 

- 

3316 3060 

3 2 

1E -4 1E -4 

IE - 5 1E - 5 
- - 

130,220 

116,159 

484 

1 

1E - 4 

1E -6 

1E - 5 

a Procedure C is prohibitive. 

TABLE V 

J = 20 J = 40 

Procedure B’ Procedure D Procedure Db 

r(3.7609) 

cpu time 

Iterations 

Expected tube/space iterations 
@VR, Am) 

Actual tube/space iterations 

Matrix size 

Arrays 

4 
6 

3.75992 3.76000 3.76031 

99.76 44.45 47.27 

6 8 2; 

- 
- 

12120 

2 

1E - 4 

1E - 5 
- 

460,840 1720,328O 

285,480 1071,1865 

1764 6724 

1 1 

1E - 4 1E - 4 

1E - 6 1E - 6 

1E - 5 1E - 5 

D Procedures A and C are prohibitive for J = 20. 
b Procedure B is also prohibitive for J = 40. 
c Initial guess used is the result with J = 20. 
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The total central processing unit (CPU) time required by procedures B and D are 
comparable for J = 5, but, even for J = 10, procedure D is significantly faster and 
becomes more so as J increases. A reason for the poor showing of procedure C, when 
compared to procedure D, is that the former method requires many more iterations. 
Although the number of outer (interstitial) iterations is generally the same for proce- 
dures C and D, the number of inner iterations is usually larger in procedure C. On the 
other hand, in procedure D, the number of pointwise iterations is close to a minimum 
in a certain sense. That is, as shown in Table III, with J = 5 the actual number of 
iterations in the DVR and AVR required to compute the Jacobian matrix for the 
interstitium is 40 and 60, respectively. This is about what one might expect from the 
connectivity of the system if one assumes that a perturbation at any position in the 
interstitium will require one iteration at each tubal segment downstream. However, 
as shown in Tables IV and V, as J increases, the actual number of iterations becomes 
much less than predicted since, for example, 

lim {F& + 1) - F&j) + (WWJdj + 1) + JdAlI = 0, 
Ax+0 (4.3) 

so that a perturbation decays more rapidly as the spatial resolution increases. On the 
other hand, in the Newton methods the ratio of nonzero to total number of elements 
in the Jacobian matrix remains constant at about 30 % for J = 5, 10, and 20. 

The computer storage required is an important feature of a method. Procedure D 
requires the least amount of storage in that the largest linear system solved is for the 
interstitium and is of size 25 + 2. The tubes are solved either exactly or as systems of 
K + 1 equations, where Kis the number of solutes in the tube. Solution by Gaussian 
elimination with partial pivoting requires only one array of size (25 + 2)2 for the 
interstitium. Procedure C requires, in addition, that a system of K + 1 equations be 
solved for each tube. Since such a system is sparse, use of the general sparse algorithm 
requires three arrays of size M, where M << [(K + 1)512 is the number of nonzero 
elements in the Jacobian. Procedure B is competitive in its use of storage for up to 
moderately large J, since it requires but two arrays of size 3J(lOJ + 2). Procedure A 
requires three arrays of size M where M < < (1OJ + 2)2. 

dy is the increment used in differencing numerically to calculate the Jacobian 
matrix. A value slightly larger than the convergence criterion has been found to be 
adequate. E and E[ are convergence criteria for the inner iterations and the outer 
(interstitial) iterations, respectively. In procedure D, it is advantageous to converge 
the tubes to a closer tolerance than is required for overall convergence, since this 
will generally lead to fewer outer iterations. 

The region of attraction of solutions has been investigated for each of the difference 
schemes. As shown in Table VI, procedure D has the widest region of attraction when 
the DHL is solved exactly. Procedure C differs from procedure D only in the manner 
in which the tube equations are solved. This suggests that it is important to solve 
the tube equations quite accurately, perhaps using double precision, to take full 
advantage of the method of interstitial iterations. Since the choice of physical param- 
eters, such as permeabilities, affects the region of attraction, it is possible to extend 
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TABLE VI 

Intttal . . concentratrons cil a 

0.01 0.3 0.7 0.9 1.0 1.5 1.7 

Procedure A - + + + + + + 
Procedure B + + + + + + 
Procedure C 0 + 0 + 0 0 
Procedure D (DHL linearized) 0 0 + + + - 
Procedure D (DHL exact) + + + + + + + 

LI + indicates convergence to positive solution; 0 indicates no convergence to solution; - indicates 
convergence with flow reversal. 

the region initially by a judicious choice of parameters. For example, as shown in 
Table VI, procedure D with the equations for the DHL solved by Newton’s method 
will result in flow reversal when crll = 1. However, cr,, = 0.9 will yield a positive 
solution which will lead to convergence when used as an initial guess to the desired 
problem with cl1 = 1. 

Procedure D was used to calculate the solution for a sequence of fine mesh spacings. 
The results are shown in Table VII, together with the results of Richardson extra- 
polation from these values. From these results it is seen that the error in the difference 
method is ~((Ax)~), as would be expected. Richardson extrapolation does indeed give 
more accurate results, but, on the other hand, the 1 ‘A error in r for J = 4 indicates 
that, for this problem, four mesh intervals is adequate for practical purposes. 

TABLE VII 

Concentration Ratio r 

Procedure D Extrapolated 

4 3.73750 
6 3.75005 
8 3.75480 

12 3.75821 
16 3.75938 3.76056 
24 3.76015 
32 3.76051 
36 3.76058 3.76093 
48 3.76064 
64 3.76079 3.76091 

144 3.76088 
256 3.76089 
576 3.76087 

1024 3.76088 
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5. CONCLUSIONS 

Based on our experience in modelling renal behavior, the following seems to be a 
useful set of guidelines for solving nonlinear fluid network problems. (a) Formulate 
difference equations so as to preserve the conservation character of the original system 
of equations. For this it is convenient to write the differential equations in a conserva- 
tion form and apply a centered Euler difference approximation. (b) Divide the un- 
knowns of the problem into groups, each group corresponding to either unknowns 
along a physical flow path of the network, or to unknowns which link the flow paths. 
By eliminating the unknowns within a flow path, the network equations are reduced 
to a system of equations involving the linking variables. Use Newton’s method to 
solve the reduced system. (c) Within each flow path, the equations should be solved, 
if possible, in a stepwise procedure proceeding in the direction of flow. The equations 
within each flow path must be solved with adequate accuracy, perhaps using double 
precision calculations. 

In the renal problem, the flow paths are the tubes of the network, and the linking 
variables are the interstitial variables. The blockwise elimination of variables is 
discussed in more detail in Stephenson [9]. 
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